## Bio

Professor of Mathematics, University of Virginia.

Research interests: Low-dimensional geometry and topology

Content

## Bio

Professor of Mathematics, University of Virginia.

Research interests: Low-dimensional geometry and topology

- Akhmechet R, Johnson P, Krushkal V. Lattice cohomology and q-series invariants of 3-manifolds. arXiv:2109.14139. 2021.
An invariant is introduced for negative definite plumbed 3-manifolds equipped with a spin

^{c}-structure. It unifies and extends two theories with rather different origins and structures. One theory is lattice cohomology, motivated by the study of normal surface singularities, known to be isomorphic to the Heegaard Floer homology for certain classes of plumbed 3-manifolds. Another specialization gives BPS q-series which satisfy some remarkable modularity properties and recover SU(2) quantum invariants of 3-manifolds at roots of unity.

In particular, our work gives rise to a 2-variable refinement of the \(\widehat Z\)-invariant.FilePDF668.17 KB - Arone G, Krushkal V. Embedding obstructions in R
^{d}from the Goodwillie-Weiss calculus and Whitney disks. arXiv:2101.10995. 2021.Given a finite CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings of $K$ into a Euclidean space $\R^d$. For $2$-dimensional complexes in $\R^4$, a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case we show the two approaches lead to essentially the same obstruction. We also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples. Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.

FilePDF4.33 MB - Krushkal V, Wedrich P. gl(2) foams and the Khovanov homotopy type. To appear in Indiana University Mathematics Journal; arXiv:2101.05785. 2021.FilePDF1.41 MB
- Akhmechet R, Krushkal V, Willis M. Stable homotopy refinement of quantum annular homology. Compos. Math. 157 (2021), 710-769. 2021.
We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each r>2 we associate to an annular link L a naive Z/rZ-equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of L as modules over Z[Z/rZ]. The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology.

FilePDF1.22 MB - Freedman M, Krushkal V. Filling links and spines in 3-manifolds, with an appendix by C. Leininger and A. Reid. arXiv:2010.15644. 2020.
We introduce and study the notion of filling links in 3-manifolds: a link L is filling in M if for any 1-spine G of M which is disjoint from L, π

_{1}(G) injects into π_{1}(M∖L). A weaker "k-filling" version concerns injectivity modulo k-th term of the lower central series. For each k>1 we construct a k-filling link in the 3-torus. The proof relies on an extension of the Stallings theorem which may be of independent interest. We discuss notions related to "filling" links in 3-manifolds, and formulate several open problems. The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link in any closed orientable 3-manifold with π_{1}(M) of rank 2.FilePDF3.14 MB